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Abstract. We study the diffractive properties of metallic photonic crystals in the homogenization
regime. It is shown that for aH‖ polarized field, the metallic crystal has an anomalous behaviour: it
behaves like an artificial dielectric material with a current on its boundary. Numerical computations
are given showing the practical use of the theoretical results.

In this paper, our aim is to study the scattering properties of a set of parallel infinitely conducting
fibres in the low-frequency regime. Such a structure may model, for instance, a metallic
photonic crystal [1–3], a device that is the subject of many studies principally because it
has a gap starting from zero frequency up to a plasma frequency [4–10], at least forE‖
polarized fields (electric field parallel to the axis of the fibres). The homogeneous study of
such structures is aimed at providing a homogeneous medium possessing equivalent diffractive
properties [9–17]. In a preceding paper [9], we gave some rigorous results concerning the
homogeneous properties of both dielectric and metallic photonic crystal for both cases of
polarization. We emphasize here the case ofH‖ polarization (magnetic field parallel to the
fibres), for which the homogeneous behaviour of a metallic crystal is anomalous; indeed it
cannot be written as a classical diffraction problem. The structure is made of circular perfectly
conducting scatterers that are periodically settled in a domain� of the plane, in the following
way. First, we define an elementary cellY = [0, 1[2 (with coordinates(x1, x2)), in which we
set a scattererT (the size ofY is to be expressed in terms of wavelength units). We denote as
θ the filling ratio of cellY , which is the area measure ofT . Then for a given scaling parameter
η > 0, we fill up� with cellsηY containing a scattererηT . This way,� containsNη ' |�|η2

scatterers. When this structure is illuminated by an incident fieldui underH‖ polarization,
it gives rise to a scattered fielduη verifying the Helmholtz equation outside the fibres and a
Neumann condition on the fibres. Our aim is to describe the limit ofuη asη tends to zero (the
size of cellηT is thus very small compared with the wavelength). By means of homogenization
analysis (see [10–12] for an introduction to this subject with an emphasis on electrostatics and
electromagnetics), it may be shown thatuη converges, asη tends to zero, towards a function
u0, which satisfies

1u0 + k2
0u0 = 0 outside �

1u0 + k2
0εhu0 = 0 inside �

u0 − ui satisfies a radiation condition
(1)
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where

εh = 1− θ
1− θ + χ

(2)

is the homogenized relative permittivity (in general, when the cross section of the rods
is not circular the homogenized medium is anisotropic). The coefficientχ is defined as
χ = ∫

Y\T
∂w
∂x2

dx2, wherew is the uniqueY -periodic function with zero mean, verifying the
so-called auxiliary problem:

−1w = 0 in Y \ T
∂w

∂n
= −nx1 on ∂T

(3)

wherenx1 is thex1-component of the outer normal of∂T (note that we would obtain the same
result by invertingx2 andx1, because of the symmetry of the problem). Here we have given
a very ‘fuzzy’ statement, since when one is considering the convergence of a sequence of
functions, one should precise the topology for which the sequence converges. Without going
into details, we can say thatuη converges uniformly towardsu0 on every compact domain
outside�, but it converges only in quadratic mean towardsu0 inside� (it does not converge
pointwise inside�).

Now, equations (1), (2) are not sufficient to completely define the limit field. Indeed, it is
necessary to precise the transmission conditions. This is where the behaviour is anomalous as
the new transmission conditions through∂� take the following form:

u− = (1− θ)u+

1

εh

(
∂u

∂n

)−
=
(
∂u

∂n

)+

.
(4)

The notationsf + andf − denote, respectively, the exterior and interior trace off on the
boundary of�.

Obviously, there is a current that appears on the boundary of�, andthe homogeneous
problem is not that of a simple artificial dielectric, since the magnetic field is not continuous
through the boundary of�. It should be noted that this is the only case where such a situation
occurs. In all other cases, that is for dielectric or metallic media illuminated byE‖ fields
or dielectric media illuminated byH‖ fields, the homogeneous medium leads to a standard
problem of diffraction [9]. From a physical point of view, let us remark that on the perfectly
conducting fibres, the magnetic field induces turning currents; these micro-currents lead to a
macroscopic current situated on the boundary of� when passing to the limitη→ 0.

Now there are two major problems that we should tackle. First, the homogeneous
description of the medium is relevant if one is able to provide some sort of answer to the
following question: under what hypothesis is it possible to replace a finite set of fibres by
the homogeneous problem (1), (4)? That is, we hope that the homogeneous description will
conveniently describe a practical situation with a reasonable value of the number of scatterers
and for not too large wavelengths. In other words, though the mathematical analysis was
performed forη tending to zero, we hope that the limit fieldu0 will handle the case of small,
but nonzero, values ofη. The second problem is that of calculating the equivalent permittivity.
Obviously, when dealing with a homogenization process, one wishes to getin finea simpler
problem than the one we started from. However, the auxiliary problem (3) is far from simple to
deal with if one wishes to obtain precise numerical results; consequently the interest shown in
the homogenized problem may be questionable. Although there is a large amount of literature
devoted to this numerical problem [19–23], here we shall adopt another line of attack. The
homogenized permittivity will be obtained by a direct computation relying on a rigorous theory
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Figure 1. Minimal values ofJ for varyingη (λ = 2, r/λ = 1
16, R/λ = 1

2).

of diffraction by a set of parallel rods [18], and by an optimization algorithm. For the numerical
computations, we use a circular domain� (radiusR) because it simplifies the optimization
process, but the results extend to an arbitrarily shaped domain� as the homogenized problem
only depends upon the geometry of the basic cellY .

More precisely, we first compute the fieldgη(ϕ) diffracted at infinity by a set ofNη parallel
infinitely conducting circular fibres (radiusη×r) for an incident monochromatic plane waveui

underH‖ polarization with wavelength in vacuumλ (let us recall thatuη−ui ∼
ρ→+∞

eikρ√
kρ
gη(ϕ),

where(ρ, ϕ) denote the usual polar coordinates andk = 2π
λ

). We want to find a couple(ε̃h, θ̃ )
such that the fieldg0(ϕ) diffracted at infinity by a cylinder of cross section� and relative
permittivity ε̃h, with the particular transmission conditions (4) (with parameterθ̃ ), fits at best
with gη(ϕ). We thus define a normalized cost function

J =
√√√√∫ 2π

0 |gη(ϕ)− g0(ϕ)|2 dϕ∫ 2π
0 |gη(ϕ)|2 dϕ

(5)

and we use an optimization algorithm in order to minimizeJ (we use a Nelder–Mead-type
simplex search method). We denoteJ̃ (ε̃h, θ̃ ) = minJ . If the homogenization scheme is valid
for given wavelengthλ and scaling parameterη, then we should find numerically thatθ ' θ̃ ,
and thatJ̃ (ε̃h, θ̃ ) is rather small (this point is indeed rather subjective). Moreover, ifθ̃ is nearθ
andJ̃ (ε̃h, θ̃ ) is small enough, then the numerical valueε̃h will be an approximate value ofεh.

First, we want to know for which ratiosη the homogenization scheme is valid. We take
λ = 2, r/λ = 1

16, R/λ = 1
2 (recall that the side of the elementary cellY is 1 in λ units)

and we computeuη for η varying between 0.1 and 1. The values of̃J (ε̃h, θ̃ ) are plotted as a
percentage in figure 1. Clearly, here there is a converging process, and for values ofη less than
0.15(η×1/λ < 0.075) the relative error is less than 10%. Let us now study the homogenized
parameters̃εh andθ̃ . In order to avoid artefact effects, we perform another computation with
R/λ = 0.2 andη× 1/λ = 0.025, so that the homogenization regime is reached. We now use
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Figure 2. Comparison between the true filling ratioθ and the computed̃θ , for varyingθ (R/λ = 0.2,
η × 1/λ = 0.025).

the optimization scheme forθ varying betweenπ/100 andπ/4 (this last value is the maximum
for circular fibres). We thus obtaiñεh and θ̃ as functions ofθ . First we verify, see figure 2,
that θ̃ ' θ (apart perhaps for the highest values ofθ ). On the other hand, in figure 3, the
solid curve is a plot of the equivalent indexñh =

√
ε̃h, obtained by the minimization of (5),

which is an approximate value of
√
εh. This curve shows that the homogenized relative index

depends almost linearly of the filling ratioθ . A numerical fitting procedure provides us with
the following estimate:

ñh = 0.45× θ + 1. (6)

The graph of this function is plotted as a dashed line in figure 3. It is perfectly
understandable that the affine part of this equation should be equal to 1, as the caseθ = 0
corresponds to a void medium. Finally, it is quite simple to obtain the homogenized index
from relation (6). Nevertheless, we have obtained this simple law through a particular
numerical experiment (η/λ = 0.025, R/λ = 0.2) so that the generality of this formula
needs to be checked. To do so, we plot the values ofε̃h (dashed curve in figure 4) and̃θ
(dashdot line in figure 4) obtained from the first numerical experiment (λ = 2, r/λ = 1

16,
R/λ = 1

2), as well as the actual value ofθ (dotted straight line in figure 4,θ = π/64),
and the value of the equivalent permittivity (= 1.0447) predicted by (6) (solid straight line
in figure 4). We see a clear convergence towards these values asη → 0. Therefore,
formula (6) appears to be rather general, so that it proves to be a good, and particularly
simple way of solving the auxiliary problem (3). To complete these results, in figure 5 we
have plotted the fields diffracted at infinity for both the set of fibres and the homogenized
medium forη = 0.1. In that case the relative error defined in (5) is equal to 7%. One
can see that there is a fair agreement between the two curves. Moreover, one may wonder
about the near-field behaviour since we obtained our results by optimizing the field diffracted
at infinity. Therefore, we have also plotted, see figure 6, the total exterior field for both
problems on the boundary of�. We see that the agreement is also very good, so that
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Figure 3. Fitting of the computed homogenized indexñh as a function ofθ (solid curve) by the
affine law (6) (dashed line).
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Figure 4. Convergence of the computed homogenized permittivityε̃h and filling ratioθ̃ for varying
η (λ = 2, r/λ = 1

16, R/λ = 1
2).

the homogenized problem represents very well the true problem for both far and near
fields.

In summary, we have described the behaviour of metallic photonic crystal forH‖
polarization in the low-frequency domain. In this case, the photonic crystal behaves as a
homogeneous dielectric medium with a current on its boundary. The given theoretical results
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Figure 5. Comparison between the field diffracted at infinity by the set of fibres (solid curve)
(λ = 2, r/λ = 1

16, R/λ = 1
2 , η = 0.1) and the field diffracted at infinity by the homogenized

medium (dashed curve) (εh = 1.0447,θ = π/64).
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Figure 6. Modulus of the exterior field on∂� for the set of fibres (solid curve) and for the
homogenized medium (dashed curve) (same parameters as in figure 5).
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come from a rigorous asymptotic study of the Maxwell equations, and their practical interest
has been discussed numerically, by means of a rigorous theory of diffraction.
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